Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.398
1.
An Acad Bras Cienc ; 96(2): e20231208, 2024.
Article En | MEDLINE | ID: mdl-38747841

The enterotoxigenic Escherichia coli (ETEC) strain is one of the most frequent causative agents of childhood diarrhea and travelers' diarrhea in low-and middle-income countries. Among the virulence factors secreted by ETEC, the exoprotein EtpA has been described as an important. In the present study, a new detection tool for enterotoxigenic E. coli bacteria using the EtpA protein was developed. Initially, antigenic sequences of the EtpA protein were selected via in silico prediction. A chimeric recombinant protein, corresponding to the selected regions, was expressed in an E. coli host, purified and used for the immunization of mice. The specific recognition of anti-EtpA IgG antibodies generated was evaluated using flow cytometry. The tests demonstrated that the antibodiesdeveloped were able to recognize the native EtpA protein. By coupling these antibodies to magnetic beads for the capture and detection of ETEC isolates, cytometric analyses showed an increase in sensitivity, specificity and the effectiveness of the method of separation and detection of these pathogens. This is the first report of the use of this methodology for ETEC separation. Future trials may indicate their potential use for isolating these and other pathogens in clinical samples, thus accelerating the diagnosis and treatment of diseases.


Antibodies, Bacterial , Enterotoxigenic Escherichia coli , Escherichia coli Proteins , Flow Cytometry , Enterotoxigenic Escherichia coli/immunology , Animals , Mice , Flow Cytometry/methods , Escherichia coli Proteins/immunology , Antibodies, Bacterial/immunology , Sensitivity and Specificity , Mice, Inbred BALB C , Female , Immunoglobulin G/immunology
2.
NPJ Biofilms Microbiomes ; 10(1): 42, 2024 May 02.
Article En | MEDLINE | ID: mdl-38697985

Post-weaning diarrhoea (PWD) in piglets presents a widespread problem in industrial pig production and is often caused by enterotoxigenic E. coli (ETEC) strains. Current solutions, such as antibiotics and medicinal zinc oxide, are unsustainable and are increasingly being prohibited, resulting in a dire need for novel solutions. Thus, in this study, we propose and evaluate a protein-based feed additive, comprising two bivalent heavy chain variable domain (VHH) constructs (VHH-(GGGGS)3-VHH, BL1.2 and BL2.2) as an alternative solution to manage PWD. We demonstrate in vitro that these constructs bind to ETEC toxins and fimbriae, whilst they do no affect bacterial growth rate. Furthermore, in a pig study, we show that oral administration of these constructs after ETEC challenge reduced ETEC proliferation when compared to challenged control piglets (1-2 log10 units difference in gene copies and bacterial count/g faeces across day 2-7) and resulted in week 1 enrichment of three bacterial families (Prevotellaceae (estimate: 1.12 ± 0.25, q = 0.0054), Lactobacillaceae (estimate: 2.86 ± 0.52, q = 0.0012), and Ruminococcaceae (estimate: 0.66 ± 0.18, q = 0.049)) within the gut microbiota that appeared later in challenged control piglets, thus pointing to an earlier transition towards a more mature gut microbiota. These data suggest that such VHH constructs may find utility in industrial pig production as a feed additive for tackling ETEC and reducing the risk of PWD in piglet populations.


Diarrhea , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Gastrointestinal Microbiome , Swine Diseases , Weaning , Animals , Swine , Diarrhea/microbiology , Diarrhea/prevention & control , Diarrhea/veterinary , Escherichia coli Infections/prevention & control , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Swine Diseases/microbiology , Swine Diseases/prevention & control , Animal Feed , Feces/microbiology
3.
Front Cell Infect Microbiol ; 14: 1367385, 2024.
Article En | MEDLINE | ID: mdl-38628550

Introduction: Neonatal calf diarrhea (NCD) is one of the most common diseases in calves, causing huge economic and productivity losses to the bovine industry worldwide. The main pathogens include bovine rotavirus (BRV), bovine coronavirus (BCoV), and Enterotoxigenic Escherichia coli (ETEC) K99. Since multiple infectious agents can be involved in calf diarrhea, detecting each causative agent by traditional methods is laborious and expensive. Methods: In this study, we developed a one-step multiplex Real-Time PCR assay to simultaneously detect BRV, BCoV, and E. coli K99+. The assay performance on field samples was evaluated on 1100 rectal swabs of diseased cattle with diarrhea symptoms and compared with the conventional gel-based RT-PCR assay detect BRV, BCoV, and E. coli K99+. Results: The established assay could specifically detect the target pathogens without cross-reactivity with other pathogens. A single real-time PCR can detect ~1 copy/µL for each pathogen, and multiplex real-time PCR has a detection limit of 10 copies/µL. Reproducibility as measured by standard deviation and coefficient of variation were desirable. The triple real-time PCR method established in this study was compared with gel-based PT-PCR. Both methods are reasonably consistent, while the real-time PCR assay was more sensitive and could rapidly distinguish these three pathogens in one tube. Analysis of surveillance data showed that BRV and BCoV are major enteric viral pathogens accounting for calves' diarrhea in China. Discussion: The established assay has excellent specificity and sensitivity and was suitable for clinical application. The robustness and high-throughput performance of the developed assay make it a powerful tool in diagnostic applications and calf diarrhea research. ​.


Cattle Diseases , Enterotoxigenic Escherichia coli , Rotavirus , Animals , Cattle , Real-Time Polymerase Chain Reaction/veterinary , Reproducibility of Results , Diarrhea/diagnosis , Diarrhea/veterinary , Rotavirus/genetics , Cattle Diseases/diagnosis , Feces
4.
Sci Rep ; 14(1): 8816, 2024 04 16.
Article En | MEDLINE | ID: mdl-38627472

The diagnostic assays currently used to detect Shigella spp. (Shigella) and enterotoxigenic Escherichia coli (ETEC) are complex or elaborate which make them difficult to apply in resource poor settings where these diseases are endemic. The simple and rapid nucleic acid amplification-based assay "Rapid LAMP-based Diagnostic Test (RLDT)" was evaluated to detect Shigella spp (Shigella) and enterotoxigenic Escherichia coli (ETEC) and determine the epidemiology of these pathogens in Kolkata, India. Stool samples (n = 405) from children under five years old with diarrhea seeking care at the hospitals were tested, and 85(21%) and 68(17%) by RLDT, 91(23%) and 58(14%) by quantitative PCR (qPCR) and 35(9%) and 15(4%) by culture, were positive for Shigella and ETEC, respectively. The RLDT showed almost perfect agreement with qPCR, Kappa 0.96 and 0.89; sensitivity 93% and 98%; specificity 100% and 97% for Shigella and ETEC, respectively. While RLDT detected additional 12% Shigella and 13% ETEC than culture, all culture positives for Shigella and ETEC except one each were also positive by the RLDT, sensitivity 97% and 93% respectively. RLDT is a simple, sensitive, and rapid assay that could be implemented with minimum training in the endemic regions to strengthen the disease surveillance system and rapid outbreak detection.


Enterotoxigenic Escherichia coli , Escherichia coli Infections , Shigella , Child , Humans , Child, Preschool , Enterotoxigenic Escherichia coli/genetics , Escherichia coli Infections/diagnosis , Escherichia coli Infections/epidemiology , Rapid Diagnostic Tests , Shigella/genetics , Diarrhea/diagnosis , Diarrhea/epidemiology
5.
Int J Mol Sci ; 25(7)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38612450

Enterotoxigenic Escherichia coli (ETEC) strains are significant contributors to postweaning diarrhea in piglets. Of the ETEC causing diarrhea, K88 and F18 accounted for 92.7%. Despite the prevalence of ETEC K88 and F18, there is currently no effective vaccine available due to the diversity of these strains. This study presents an innovative approach by isolating chicken-derived single-chain variable fragment antibodies (scFvs) specific to K88 and F18 fimbrial antigens from chickens immunized against these ETEC virulence factors. These scFvs effectively inhibited adhesion of K88 and F18 to porcine intestinal epithelial cells (IPEC-J2), with the inhibitory effect demonstrating a dose-dependent increase. Furthermore, a bispecific scFv was designed and expressed in Pichia pastoris. This engineered construct displayed remarkable potency; at a concentration of 25.08 µg, it significantly reduced the adhesion rate of ETEC strains to IPEC-J2 cells by 72.10% and 69.11% when challenged with either K88 or F18 alone. Even in the presence of both antigens, the adhesion rate was notably decreased by 57.92%. By targeting and impeding the initial adhesion step of ETEC pathogenesis, this antibody-based intervention holds promise as a potential alternative to antibiotics, thereby mitigating the risks associated with antibiotic resistance and residual drug contamination in livestock production. Overall, this study lays the groundwork for the development of innovative treatments against ETEC infections in piglets.


Antibodies, Bispecific , Enterotoxigenic Escherichia coli , Immunoglobulins , Single-Chain Antibodies , Animals , Swine , Single-Chain Antibodies/pharmacology , Chickens , Diarrhea/veterinary
6.
J Anim Sci ; 1022024 Jan 03.
Article En | MEDLINE | ID: mdl-38629856

Frequent incidence of postweaning enterotoxigenic Escherichia coli (ETEC) diarrhea in the swine industry contributes to high mortality rates and associated economic losses. In this study, a combination of butyric, caprylic, and capric fatty acid monoglycerides was investigated to promote intestinal integrity and host defenses in weanling pigs infected with ETEC. A total of 160 pigs were allotted to treatment groups based on weight and sex. Throughout the 17-d study, three treatment groups were maintained: sham-inoculated pigs fed a control diet (uninfected control [UC], n = 40), ETEC-inoculated pigs fed the same control diet (infected control [IC], n = 60), and ETEC-inoculated pigs fed the control diet supplemented with monoglycerides included at 0.3% of the diet (infected supplemented [MG], n = 60). After a 7-d acclimation period, pigs were orally inoculated on each of three consecutive days with either 3 mL of a sham-control (saline) or live ETEC culture (3 × 109 colony-forming units/mL). The first day of inoculations was designated as 0 d postinoculation (DPI), and all study outcomes reference this time point. Fecal, tissue, and blood samples were collected from 48 individual pigs (UC, n = 12; IC, n = 18; MG, n = 18) on 5 and 10 DPI for analysis of dry matter (DM), bacterial enumeration, inflammatory markers, and intestinal permeability. ETEC-inoculated pigs in both the IC and MG groups exhibited clear signs of infection including lower (P < 0.05) gain:feed and fecal DM, indicative of excess water in the feces, and elevated (P < 0.05) rectal temperatures, total bacteria, total E. coli, and total F18 ETEC during the peak-infection period (5 DPI). Reduced (P < 0.05) expression of the occludin, tumor necrosis factor α, and vascular endothelial growth factor A genes was observed in both ETEC-inoculated groups at the 5 DPI time point. There were no meaningful differences between treatments for any of the outcomes measured at 10 DPI. Overall, all significant changes were the result of the ETEC infection, not monoglyceride supplementation.


Infection caused by the bacterium known as enterotoxigenic Escherichia coli (ETEC) is a common disruptor of weaned pigs' health, leading to economic losses for the producers. To determine if nutritional supplementation could help protect against these losses, weaned pigs were assigned to one of three treatments: 1) uninfected and fed a standard nursery pig diet, 2) infected with ETEC and fed the same standard diet, or 3) infected with ETEC and fed the standard diet supplemented with a combination of butyric, caprylic, and capric fatty acid monoglycerides. Growth performance was tracked throughout the 17-d study and health outcomes were measured at the peak and resolution of ETEC infection. At the peak-infection time point, pigs that were infected with ETEC had lower fecal moisture content, greater fecal bacterial concentrations, and elevated body temperatures compared with uninfected pigs. Additionally, infection reduced expression of genes related to inflammation, angiogenesis, and the intestinal barrier during the peak-infection period. Overall, all significant changes were the result of the ETEC infection, and there were no meaningful differences observed between the different treatments.


Animal Feed , Dietary Supplements , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Monoglycerides , Swine Diseases , Animals , Swine , Swine Diseases/microbiology , Swine Diseases/prevention & control , Escherichia coli Infections/veterinary , Escherichia coli Infections/prevention & control , Enterotoxigenic Escherichia coli/physiology , Male , Female , Animal Feed/analysis , Diet/veterinary , Intestines/microbiology , Diarrhea/veterinary , Diarrhea/microbiology , Feces/microbiology , Weaning
7.
Can J Vet Res ; 88(2): 38-44, 2024 Apr.
Article En | MEDLINE | ID: mdl-38595949

Enterotoxigenic Escherichia coli (ETEC) is an important type of pathogenic bacteria that causes diarrhea in pigs. The objective of this study was to prepare a novel tetravalent vaccine to effectively prevent piglet diarrhea caused by E. coli. In order to realize the production of K88ac-K99-ST1-LTB tetravalent inactivated vaccine, the biological characteristics, stability, preservation conditions, and safety of the recombinant strain BL21(DE3) (pXKKSL4) were studied, and the vaccine efficacy and minimum immune dose were measured. The results indicated that the biological characteristics, target protein expression, and immunogenicity of the 1st to 10th generations of the strain were stable. Therefore, the basic seed generation was preliminarily set as the 1st to 10th generations. The results of the efficacy tests showed that the immune protection rate could reach 90% with 1 minimum lethal dose (MLD) virulent strain attack in mice. The immunogenicity was stable, and the minimum immune dose was 0.1 mL per mouse. Our research showed that the genetically engineered vaccine developed in this way could prevent piglet diarrhea caused by enterotoxigenic E. coli through adhesin and enterotoxin. In order to realize industrial production of the vaccine as soon as possible, we conducted immunological tests and production process research on the constructed K88ac-K99-ST1-LTB tetravalent inactivated vaccine. The results of this study provide scientific experimental data for the commercial production of vaccines and lay a solid foundation for their industrial production.


Escherichia coli entérotoxinogènes (ETEC) est un type important de bactéries pathogènes qui cause de la diarrhée chez les porcs. L'objectif de l'étude était de préparer un nouveau vaccin tétravalent pour prévenir efficacement la diarrhée causée par E. coli chez les porcelets. Afin de réaliser la production du vaccin tétravalent inactivé K88ac-K99-ST1-LTB, les caractéristiques biologiques, la stabilité, les conditions de conservation, et la sécurité de la souche recombinante (BL21(DE3)(pXKKSL4) ont été étudiées et l'efficacité du vaccin et la dose immunitaire minimum ont été mesurées. Les résultats indiquent que les caractéristiques biologiques, l'expression des protéines cibles, et l'immunogénicité de la 1ère à la 10e génération de la souche étaient stables. Ainsi, la génération germinale de base a été établie de manière préliminaire comme étant de la 1ère à la 10e générations. Les résultats des tests d'efficacité ont démontré que le taux de protection immunitaire pouvait atteindre 90 % avec une attaque au moyen de 1 dose léthale minimale (MLD) d'une souche virulente chez les souris. L'immunogénicité était stable et la dose immunitaire minimum était de 0,1 mL par souris. Nos travaux ont démontré que le vaccin génétiquement élaboré développé de cette façon pourrait prévenir la diarrhée chez les porcelets causée par des E. coli entérotoxigénique via les adhésines et les entérotoxines. Afin d'atteindre la production industrielle de ce vaccin aussitôt que possible, nous avons mené des tests immunologiques et de la recherche sur le processus de production du vaccin tétravalent inactivé K88ac-K99-ST1-LTB. Les résultats de la présente étude fournissent des données scientifiques expérimentales pour la production commerciale de vaccins et jettent une base solide pour leur production industrielle.(Traduit par Docteur Serge Messier).


Bacterial Toxins , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Escherichia coli Vaccines , Rodent Diseases , Swine Diseases , Animals , Swine , Mice , Enterotoxins , Vaccines, Combined , Escherichia coli Infections/prevention & control , Escherichia coli Infections/veterinary , Diarrhea/prevention & control , Diarrhea/veterinary , Diarrhea/microbiology , Escherichia coli Proteins/genetics , Vaccines, Inactivated , Antibodies, Bacterial , Swine Diseases/microbiology
8.
Front Public Health ; 12: 1332319, 2024.
Article En | MEDLINE | ID: mdl-38584932

Background: Enterotoxigenic E. coli (ETEC) is a leading cause of diarrheal morbidity and mortality in children, although the data on disease burden, epidemiology, and impact on health at the community level are limited. Methods: In a longitudinal birth cohort study of 345 children followed until 24 months of age in Lima, Peru, we measured ETEC burden in diarrheal and non-diarrheal samples using quantitative PCR (LT, STh, and STp toxin genes), studied epidemiology and measured anthropometry in children. Results: About 70% of children suffered from one or more ETEC diarrhea episodes. Overall, the ETEC incidence rate (IR) was 73 per 100 child-years. ETEC infections began early after birth causing 10% (8.9-11.1) ETEC-attributable diarrheal burden at the population level (PAF) in neonates and most of the infections (58%) were attributed to ST-ETEC [PAF 7.9% (1.9-13.5)] and LT + ST-ETEC (29%) of which all the episodes were associated with diarrhea. ETEC infections increased with age, peaking at 17% PAF (4.6-27.7%; p = 0.026) at 21 to 24 months. ST-ETEC was the most prevalent type (IR 32.1) with frequent serial infections in a child. The common colonization factors in ETEC diarrhea cases were CFA/I, CS12, CS21, CS3, and CS6, while in asymptomatic ETEC cases were CS12, CS6 and CS21. Only few (5.7%) children had repeated infections with the same combination of ETEC toxin(s) and CFs, suggested genotype-specific immunity from each infection. For an average ETEC diarrhea episode of 5 days, reductions of 0.060 weight-for-length z-score (0.007 to 0.114; p = 0.027) and 0.061 weight-for-age z-score (0.015 to 0.108; p = 0.009) were noted in the following 30 days. Conclusion: This study showed that ETEC is a significant pathogen in Peruvian children who experience serial infections with multiple age-specific pathotypes, resulting in transitory growth impairment.


Enterotoxigenic Escherichia coli , Escherichia coli Infections , Infant, Newborn , Humans , Enterotoxigenic Escherichia coli/genetics , Peru/epidemiology , Cohort Studies , Diarrhea/epidemiology , Enterotoxins/genetics , Escherichia coli Infections/epidemiology
9.
J Agric Food Chem ; 72(13): 7219-7229, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38507577

Enterotoxigenic Escherichia coli (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal epithelial cells via glycoprotein receptor recognition, the pathogen can produce enterotoxins, impair intestinal integrity, trigger watery diarrhea, and induce inflammation via nuclear factor κB (NF-κB) and mitogen-activated protein kinase phosphatase (MAPK) pathways. Inhibiting ETEC K88 adhesion to cell surfaces by interfering with the receptor-fimbriae recognition provides a promising strategy to prevent the initiation and progression of infection. Ovomucin is a highly glycosylated protein in chicken egg white with diverse bioactivities. Ovomucin hydrolysates prepared by the enzymes Protex 26L (OP) and pepsin/pancreatin (OPP) were previously revealed to prevent adhesion of ETEC K88 to IPEC-J2 cells. Herein, we investigated the protective effects of ovomucin hydrolysates on ETEC K88-induced barrier integrity damage and inflammation in IPEC-J2 and Caco-2 cells. Both hydrolysates inhibited ETEC K88 adhesion to cells and protected epithelial cell integrity by restoring transepithelial electronic resistance (TEER) values. Removing sialic acids in the hydrolysates reduced their antiadhesive capacities. Ovomucin hydrolysates suppressed ETEC-induced activation of NF-κB and MAPK signaling pathways in both cell lines. The ability of ETEC K88 in activating calcium/calmodulin-dependent protein kinase 2 (CaMK II), elevating intracellular Ca2+ concentration, and inducing oxidative stress was attenuated by both hydrolysates. In conclusion, this study demonstrated the potential of ovomucin hydrolysates to prevent ETEC K88 adhesion and alleviate inflammation and oxidative stress in intestinal epithelial cells.


Enterotoxigenic Escherichia coli , Escherichia coli Infections , Humans , Animals , Swine , Ovomucin , Bacterial Adhesion , Caco-2 Cells , NF-kappa B/genetics , NF-kappa B/metabolism , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Diarrhea/microbiology , Epithelial Cells/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Intestinal Mucosa/metabolism
10.
Acta Trop ; 254: 107173, 2024 Jun.
Article En | MEDLINE | ID: mdl-38503364

BACKGROUND: Neonatal and post-weaning diarrhea is a concern disease caused by enterotoxigenic Escherichia coli fimbriae F4 (F4+ETEC) in pig farms. Diarrhea outbreaks are often severe and costly due to the high prevalence and spread of the disease within the same herd. Vaccine is one of strategic solution in protecting pig against F4+ETEC infection in particular pig farm. In present study, we conducted two trials of vaccination with crude F4 fimbriae extract vaccine in pregnant sow and nursery pigs. METHODS: In experiment 1 (20 sows; non-vaccinated control, n=10), we vaccinated pregnant sows (n=10) twice at 4 wk and 2 wk before farrowing and evaluated impact of vaccination on maternal immunity. The sow serum and colostrum were collected before vaccination, 2 and 4 weeks after vaccination, 6 hours after farrowing, respectively, and the piglet's serum from both groups (2 piglet/sow, 10 piglets from each group) were also collected on 3 days old to measure F4 specific IgG, F4 specific IgA using in house ELISA kit. In experiment 2, to optimize doses and dosage of candidate vaccine in piglets, 18 piglets (3 piglets/group) were allocated into five immunized groups and one control group (unimmunized group), we immunized piglets twice at 4 and 6 weeks old with difference doses (i.e., 0, 50, 100, 150, 200 µg), and for a dose 150 µg, we immunized with two dosages at 1 ml and 2 ml. Piglets were challenged with a 3 ml dose of 3 × 109 CFU/ml bacterial culture of enterotoxigenic Escherichia coli (F4+ETEC) in order to evaluate the efficacy of vaccine. After challenging, the clinical sign of the piglets was daily observed and the rectal swab was performed every day for investigation of the fecal shedding of Escherichia coli (F4+ETEC) by using PCR technique. Serum were collected before, 2 and 4 weeks after vaccination and 1 week after challenge to measure F4 specific IgG, F4 specific IgA using in house ELISA kit and cytokines levels (i.e., IL-1 beta, IL-6, IL-8 and TNF alpha) before and 1 week after challenge using commercial ELISA kit. RESULTS: The levels of antibody results showed that in experiment 1, the anti-F4 antibody levels both F4 specific IgG and F4 specific IgA in serum and colostrum of vaccinated sow increased significantly after vaccination. The piglets of immunized sows have antibody level both F4 specific IgG and F4 specific IgA in their serum higher than those piglets of unimmunized sows significantly (p < 0.01). In experiment 2, irrespective of different doses and dosage, there is no difference in term of F4 specific IgG and F4 specific IgA levels among immunized groups. However, all of vaccinated piglets showed F4 specific IgG and F4 specific IgA levels higher and the elimination of Escherichia coli (F4+ETEC) in feces post challenge faster (< 3 days) than unvaccinated group (> 5 days). For cytokines levels, a higher level of IL-1 beta, IL-6, IL-8 and TNF alpha at 1 week after challenge in vaccinated groups was found when compared with the levels in non-vaccinated group. CONCLUSIONS: Our results suggest that crude F4 fimbriae extract autogenous vaccine is a candidate vaccine for protecting piglets against diarrhea disease caused by enterotoxigenic Escherichia coli (F4+ETEC) and vaccination the pregnant sow twice before farrowing is one of strategies to provide maternal derived antibody to the newborn piglets for against enterotoxigenic Escherichia coli (F4+ETEC) during early life.


Antibodies, Bacterial , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Escherichia coli Vaccines , Swine Diseases , Animals , Swine , Female , Escherichia coli Infections/prevention & control , Escherichia coli Infections/veterinary , Escherichia coli Infections/immunology , Swine Diseases/prevention & control , Swine Diseases/immunology , Swine Diseases/microbiology , Enterotoxigenic Escherichia coli/immunology , Escherichia coli Vaccines/immunology , Escherichia coli Vaccines/administration & dosage , Pregnancy , Antibodies, Bacterial/blood , Colostrum/immunology , Immunoglobulin A/blood , Vaccination/veterinary , Immunoglobulin G/blood , Fimbriae, Bacterial/immunology , Diarrhea/prevention & control , Diarrhea/veterinary , Diarrhea/microbiology , Diarrhea/immunology , Animals, Newborn/immunology , Immunity, Maternally-Acquired
11.
Microb Pathog ; 190: 106636, 2024 May.
Article En | MEDLINE | ID: mdl-38556103

Enterotoxigenic Escherichia coli (ETEC) is one of the main causes of diarrhea in children and travelers in low-income regions. The virulence of ETEC is attributed to its heat-labile and heat-stable enterotoxins, as well as its colonization factors (CFs). CFs are essential for ETEC adherence to the intestinal epithelium. However, its invasive capability remains unelucidated. In this study, we demonstrated that the CS6-positive ETEC strain 4266 can invade mammalian epithelial cells. The invasive capability was reduced in the 4266 ΔCS6 mutant but reintroduction of CS6 into this mutant restored the invasiveness. Additionally, the laboratory E. coli strain Top 10, which lacks the invasive capability, was able to invade Caco-2 cells after gaining the CS6-expressing plasmid pCS6. Cytochalasin D inhibited cell invasion in both 4266 and Top10 pCS6 cells, and F-actin accumulation was observed near the bacteria on the cell membrane, indicating that CS6-positive bacteria were internalized via actin polymerization. Other cell signal transduction inhibitors, such as genistein, wortmannin, LY294002, PP1, and Ro 32-0432, inhibited the CS6-mediated invasion of Caco-2 cells. The internalized bacteria of both 4266 and Top10 pCS6 strains were able to survive for up to 48 h, and 4266 cells were able to replicate within Caco-2 cells. Immunofluorescence microscopy revealed that the internalized 4266 cells were present in bacteria-containing vacuoles, which underwent a maturation process indicated by the recruitment of the early endosomal marker EEA-1 and late endosomal marker LAMP-1 throughout the infection process. The autophagy marker LC3 was also observed near these vacuoles, indicating the initiation of LC-3-associated phagocytosis (LAP). However, intracellular bacteria continued to replicate, even after the initiation of LAP. Moreover, intracellular filamentation was observed in 4266 cells at 24 h after infection. Overall, this study shows that CS6, in addition to being a major CF, mediates cell invasion. This demonstrates that once internalized, CS6-positive ETEC is capable of surviving and replicating within host cells. This capability may be a key factor in the extended and recurrent nature of ETEC infections in humans, thus highlighting the critical role of CS6.


Cytochalasin D , Enterotoxigenic Escherichia coli , Escherichia coli Proteins , Humans , Caco-2 Cells , Enterotoxigenic Escherichia coli/pathogenicity , Enterotoxigenic Escherichia coli/genetics , Enterotoxigenic Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Cytochalasin D/pharmacology , Actins/metabolism , Epithelial Cells/microbiology , Bacterial Adhesion , Escherichia coli Infections/microbiology , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism , Antigens, Bacterial/metabolism , Antigens, Bacterial/genetics , Morpholines/pharmacology , Signal Transduction , Androstadienes/pharmacology , Wortmannin/pharmacology , Endocytosis , Chromones/pharmacology , Plasmids/genetics
12.
Med Microbiol Immunol ; 213(1): 2, 2024 Mar 02.
Article En | MEDLINE | ID: mdl-38430452

Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea in children and travelers, especially in low- and middle-income countries. ETEC is a non-invasive gut pathogen colonizing the small intestinal wall before secreting diarrhea-inducing enterotoxins. We sought to investigate the impact of ETEC infection on local and systemic host defenses by examining plasma markers of inflammation and mucosal injury as well as kynurenine pathway metabolites. Plasma samples from 21 volunteers experimentally infected with ETEC were collected before and 1, 2, 3, and 7 days after ingesting the ETEC dose, and grouped based on the level of intestinal ETEC proliferation: 14 volunteers experienced substantial proliferation (SP) and 7 had low proliferation (LP). Plasma markers of inflammation, kynurenine pathway metabolites, and related cofactors (vitamins B2 and B6) were quantified using targeted mass spectrometry, whereas ELISA was used to quantify the mucosal injury markers, regenerating islet-derived protein 3A (Reg3a), and intestinal fatty acid-binding protein 2 (iFABP). We observed increased concentrations of plasma C-reactive protein (CRP), serum amyloid A (SAA), neopterin, kynurenine/tryptophan ratio (KTR), and Reg3a in the SP group following dose ingestion. Vitamin B6 forms, pyridoxal 5'-phosphate and pyridoxal, decreased over time in the SP group. CRP, SAA, and pyridoxic acid ratio correlated with ETEC proliferation levels. The changes following experimental ETEC infection indicate that ETEC, despite causing a non-invasive infection, induces systemic inflammation and mucosal injury when proliferating substantially, even in cases without diarrhea. It is conceivable that ETEC infections, especially when repeated, contribute to negative health impacts on children in ETEC endemic areas.


Enterotoxigenic Escherichia coli , Escherichia coli Infections , Child , Humans , Kynurenine , Diarrhea , Inflammation , Pyridoxal
13.
Microbiol Spectr ; 12(4): e0398823, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38451226

Enterotoxigenic Escherichia coli (ETEC) is one of the major pathogens contributing to piglet diarrhea, with significant implications for both piglet health and the economic aspects of the livestock industry. SW207 is an isolate of Bacillus halotolerans isolated from the cold- and disease-resistant Leixiang pigs in Northeastern China. We have discovered that SW207 can survive in the pig's gastrointestinal fluid and under conditions of high bile salt concentration, displaying potent antagonistic activity against ETEC. In this study, we established a weaned piglet diarrhea model infected with ETEC to investigate the role of SW207 in preventing diarrhea and improving intestinal health. Results indicate that SW207 upregulates the expression of tight junction proteins, including claudin-1, occludin, and zonula occludens-1, at both the transcriptional and translational levels. Furthermore, SW207 reduces serum endotoxin, D-lactic acid, and various oxidative stress markers while enhancing piglet mechanical barrier function. In terms of immune barrier, SW207 suppressed the activation of the TLR4/MyD88/NF-κB pathway, reducing the expression of various inflammatory factors and upregulating the expression of small intestine mucosal sIgA. Concerning the biological barrier, SW207 significantly reduces the content of E. coli in the intestines and promotes the abundance of beneficial bacteria, thereby mitigating the microbiota imbalance caused by ETEC. In summary, SW207 has the potential to prevent weaned piglet diarrhea caused by ETEC, alleviate intestinal inflammation and epithelial damage, and facilitate potential beneficial changes in the intestinal microbiota. This contributes to elucidating the potential mechanisms of host-microbe interactions in preventing pathogen infections.IMPORTANCEEnterotoxigenic Escherichia coli (ETEC) has consistently been one of the significant pathogens causing mortality in weaned piglets in pig farming. The industry has traditionally relied on antibiotic administration to control ETEC-induced diarrhea. However, the overuse of antibiotics has led to the emergence of drug-resistant zoonotic bacterial pathogens, posing a threat to public health. Therefore, there is an urgent need to identify alternatives to control pathogens and reduce antibiotic usage. In this study, we assessed the protective effect of a novel probiotic in a weaned piglet model infected with ETEC and analyzed its mechanisms both in vivo and in vitro. The study results provide theoretical support and reference for implementing interventions in the gut microbiota to alleviate early weaned piglet diarrhea and improve intestinal health.


Bacillus , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Gastrointestinal Microbiome , Swine Diseases , Animals , Swine , Enterotoxigenic Escherichia coli/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/pharmacology , Intestines/microbiology , Intestinal Mucosa/microbiology , Diarrhea/prevention & control , Diarrhea/veterinary , Escherichia coli Infections/prevention & control , Escherichia coli Infections/veterinary , Anti-Bacterial Agents/pharmacology , Bacteria/metabolism , Swine Diseases/microbiology
14.
Microbiol Spectr ; 12(4): e0415323, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38364078

Enterotoxigenic Escherichia coli (ETEC) strains that produce various adhesins and one or two enterotoxins are the leading causes of children's diarrhea and travelers' diarrhea. MecVax, a multivalent ETEC vaccine candidate, consists of two proteins, an adhesin multiepitope fusion antigen (MEFA) that stimulates antibodies to the seven most important ETEC adhesins (CFA/I and CS1-CS6) and a toxoid fusion antigen which stimulates antibodies against ETEC enterotoxins (heat-labile toxin and heat-stable toxin). CFA MEFA-II, another polyvalent MEFA protein, has been demonstrated to stimulate antibodies to another five important ETEC adhesins (CS7, CS12, CS14, CS17, and CS21). We hypothesize that MecVax coverage and efficacy can be expanded if MecVax could stimulate antibodies to all 12 adhesins. In this study, we supplemented MecVax with CFA MEFA-II, examined broad immunity to the 12 targeted ETEC adhesins and 2 ETEC toxins (STa, LT) in mice, and assessed mouse antibody functions for inhibiting the adherence of the 12 adhesins and neutralizing the enterotoxicity of 2 toxins, thus assessing the potential application of a broadly protective pan-ETEC vaccine. Mice intramuscularly immunized with MecVax and CFA MEFA-II developed robust antibody responses to the 12 ETEC adhesins and 2 toxins; furthermore, mouse serum antibodies showed functional activities against the adherence from each of the targeted adhesins and the enterotoxicity of either toxin. Data also indicated that CFA MEFA-II was antigenically compatible with MecVax. These results demonstrated that the inclusion of CFA MEFA-II further expands MecVax broad immunogenicity and protection coverage, suggesting the feasibility of developing a vaccine against all important diarrheal ETEC strains.IMPORTANCEThere are no vaccines licensed for Enterotoxigenic Escherichia coli (ETEC), a leading cause of children's diarrhea and the most common cause of travelers' diarrhea. Since ETEC strains produce over 25 adhesins and 2 distinctive enterotoxins, heterogeneity is a key obstacle to vaccine development. MecVax, a multivalent ETEC vaccine candidate, induces protective antibodies against the seven most important adhesins (CFA/I and CS1-CS6) associated with two-thirds of ETEC clinical cases. However, ETEC prevalence shifts chronically and geographically, and other adhesins are also associated with clinical cases. MecVax would become a pan-ETEC vaccine if it also protects against the remaining important adhesins. This study demonstrated that MecVax supplemented with adhesin protein CFA MEFA-II induces functional antibodies against 12 important ETEC adhesins (CFA/I, CS1-CS7, CS12, CS14, CS17, and CS21), enabling the development of a more broadly protective ETEC vaccine and further validating the application of the MEFA vaccinology platform for multivalent vaccine development.


Bacterial Toxins , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Escherichia coli Vaccines , Child , Animals , Mice , Humans , Bacterial Toxins/metabolism , Enterotoxigenic Escherichia coli/metabolism , Diarrhea/prevention & control , Escherichia coli Infections/prevention & control , Antibodies, Bacterial , Travel , Enterotoxins , Escherichia coli Vaccines/metabolism , Adhesins, Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
15.
BMC Infect Dis ; 24(1): 171, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38326773

BACKGROUND: Syndromic surveillance of acute gastroenteritis plays a significant role in the diagnosis and management of gastrointestinal infections that are responsible for a substantial number of deaths globally, especially in developing countries. In Lebanon, there is a lack of national surveillance for acute gastroenteritis, and limited data exists regarding the prevalence of pathogens causing diarrhea. The one-year study aims to investigate the epidemiology of common gastrointestinal pathogens and compare our findings with causative agents of diarrhea reported by our study collaborative centers. METHODS: A multicenter, cross-sectional study was conducted over a one-year period. A total of 271 samples were obtained from outpatients and inpatients presenting with symptoms of acute gastroenteritis at various healthcare facilities. The samples were then analyzed using Allplex gastrointestinal assay that identifies a panel of enteric pathogens. RESULTS: Overall, enteropathogens were detected in 71% of the enrolled cases, 46% of those were identified in patients as single and 54% as mixed infections. Bacteria were observed in 48%, parasites in 12% and viruses in 11%. Bacterial infections were the most prevalent in all age groups. Enteroaggregative E. coli (26.5%), Enterotoxigenic E. coli (23.2%) and Enteropathogenic E. coli (20.3%) were the most frequently identified followed by Blastocystis hominis (15.5%) and Rotavirus (7.7%). Highest hospitalization rate occurred with rotavirus (63%), Enterotoxigenic E. coli (50%), Blastocystis hominis (45%) and Enteropathogenic E. coli (43%). Enteric pathogens were prevalent during summer, fall and winter seasons. CONCLUSIONS: The adoption of multiplex real-time PCR assays in the diagnosis of gastrointestinal infections has identified gaps and improved the rates of detection for multiple pathogens. Our findings highlight the importance of conducting comprehensive surveillance to monitor enteric infections. The implementation of a syndromic testing panel can therefore provide healthcare professionals with timely and accurate information for more effective treatment and public health interventions.


Enteropathogenic Escherichia coli , Enterotoxigenic Escherichia coli , Gastroenteritis , Rotavirus , Humans , Multiplex Polymerase Chain Reaction , Cross-Sectional Studies , Gastroenteritis/diagnosis , Gastroenteritis/epidemiology , Gastroenteritis/microbiology , Diarrhea/diagnosis , Diarrhea/epidemiology , Diarrhea/etiology , Rotavirus/genetics , Feces/microbiology
16.
Int J Biol Macromol ; 262(Pt 2): 130101, 2024 Mar.
Article En | MEDLINE | ID: mdl-38346619

Post-weaning diarrhea caused by enterotoxigenic E. coli F18 introduces enormous losses to the porcine industry. N6-methyladenosine (m6A) is a ubiquitous epitranscriptomic biomarker that modulates host cell resistance to pathogen infection, however, its significance in E. coli F18-treated IPEC-J2 cells remains unexplored. Herein, we revealed that m6A and associated modulators strongly controlled E. coli F18 susceptibility. The data indicated an enhancement of METTL3 contents in E. coli F18-treated IPEC-J2 cells. METTL3 is known to be a major modulator of E. coli F18 adhesion within IPEC-J2 cells. As expected, METTL3 deficiency was observed to reduce m6A content at the IKBKG 5'-UTR, leading to critical suppression of YTHDF1-dependent IKBKG translation. Therefore, the activation of the NF-κB axis was observed, which enhanced IPEC-J2 resistance to E. coli F18 infection. Taken together, these findings uncover a potential mechanism underlying the m6A-mediated control of E. coli F18 susceptibility. This information may contribute to the establishment of new approaches for combating bacteria-induced diarrhea in piglets.


Enterotoxigenic Escherichia coli , Escherichia coli Infections , Animals , Swine , NF-kappa B/metabolism , Escherichia coli Infections/metabolism , Signal Transduction , Diarrhea , Epithelial Cells/metabolism
17.
J Clin Microbiol ; 62(3): e0154523, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38329337

Acute gastroenteritis (AGE) is a leading cause of morbidity and mortality worldwide across all age groups that disproportionally affects young children in low- and middle-income countries and immunocompromised patients in high-income countries. Regional outbreaks of AGE are typically detected by traditional microbiological detection methods that target limited organisms and are associated with low sensitivity and lengthy time-to-results. Combined, these may result in repeat testing, imprecise or delayed treatment, and delayed recognition of outbreaks. We conducted a multi-site prospective study comparing the BioCode Gastrointestinal Pathogen Panel (BioCode GPP) for the detection of 17 common bacterial, viral, and protozoan causes of gastroenteritis with reference methods, including stool culture, enzyme immunoassays, pathogen-specific PCR assays, and sequencing. One thousand five hundred fifty-eight residual, de-identified stool samples (unpreserved stool and stool in Cary-Blair transport medium) were enrolled and tested for 11 bacterial, 3 viral, and 3 protozoan pathogens. BioCode GPP and reference methods were positive for 392 (25.2%) and 283 (18.2%) samples, respectively (P < 0.0001). In this study, the BioCode GPP and reference methods detected 69 and 65 specimens positive for Clostridioides difficile, 51 and 48 for enteroaggregative Escherichia coli, 33 and 27 for enterotoxigenic E. coli, 50 and 47 for norovirus GI/GII, and 30 and 22 for rotavirus A, respectively. The BioCode GPP showed good positive and negative agreements for each pathogen ranging from 89.5% to 100%, with overall sensitivity and specificity of 96.1% and 99.7%, post adjudication. The BioCode GPP detected >1 pathogens in 49 samples, representing 12.5% of the total 392 positive specimens. IMPORTANCE: This study highlights performance of a novel technology for timely and accurate detection and differentiation of 17 common bacterial, viral, and protozoan causes of gastroenteritis. Utilizing molecular tests such as the BioCode Gastrointestinal Pathogen Panel may improve the detection of gastrointestinal pathogens and provide actionable results, particularly for patient populations at most risk.


Bacteriophages , Enterotoxigenic Escherichia coli , Gastroenteritis , Norovirus , Rotavirus , Humans , Diarrhea/diagnosis , Feces/microbiology , Gastroenteritis/diagnosis , Prospective Studies , Sensitivity and Specificity
18.
Sci Rep ; 14(1): 3618, 2024 02 13.
Article En | MEDLINE | ID: mdl-38351153

As the demand for bacteriophage (phage) therapy increases due to antibiotic resistance in microbial pathogens, strategies and methods for increased efficiency, large-scale phage production need to be determined. To date, very little has been published on how to establish scalable production for phages, while achieving and maintaining a high titer in an economical manner. The present work outlines a phage production strategy using an enterotoxigenic Escherichia coli-targeting phage, 'Phage75', and accounts for the following variables: infection load, multiplicity of infection, temperature, media composition, harvest time, and host bacteria. To streamline this process, variables impacting phage propagation were screened through a high-throughput assay monitoring optical density at 600 nm (OD600) to indirectly infer phage production from host cell lysis. Following screening, propagation conditions were translated in a scalable fashion in shake flasks at 0.01 L, 0.1 L, and 1 L. A final, proof-of-concept production was then carried out in a CellMaker bioreactor to represent practical application at an industrial level. Phage titers were obtained in the range of 9.5-10.1 log10 PFU/mL with no significant difference between yields from shake flasks and CellMaker. Overall, this suggests that the methodology for scalable processing is reliable for translating into large-scale phage production.


Bacteriophages , Enterotoxigenic Escherichia coli , Bioreactors , Temperature , Bacteria
19.
J Anim Sci ; 1022024 Jan 03.
Article En | MEDLINE | ID: mdl-38198728

Enterotoxigenic Escherichia coli (ETEC) is one of the major bacterial infections, causing substantial economic losses globally in the swine industry. This study aimed to investigate the impact of low Saccharomyces cerevisiae fermentation postbiotics (SCFP), high SCFP, essential oil (EO), or their combination on the growth performance and health of weanling pigs during ETEC infection. Forty-eight male weanling pigs were randomly allocated to five groups: 1) control group (CON-basal diet, n = 16); 2) low SCFP group (LSC-basal diet + 1.25 g/kg SCFP, n = 8); 3) high SCFP group (HSC-basal diet + 2 g/kg SCFP, n = 8); 4) essential oil group (EO-basal diet + 0.4 g/kg EO, n = 8); 5) the SCFP and EO combination group (SE-basal diet + 1.25 g/kg SCFP + 0.4 g/kg EO, n = 8). On day 15 of the trial, pigs in CON were divided into positive control (PC) and negative control (NC), and all pigs, except in NC, were challenged with ETEC. Under the normal condition, dietary LSC, HSC, EO, and EO all increased average daily gain (ADG) (P < 0.05), and decreased F:G ratio (P < 0.05) accompanied by decreased malondialdehyde (MDA) and increases in catalase (CAT), total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC) indicating enhanced anti-oxidative capacity, as well as decreased IL-2, IL-8, INF-γ, indicating mitigated systemic inflammation. During ETEC infection, all treatments alleviated ETEC-induced ADG reduction, diarrhea, damages in intestinal permeability and morphology, and down-regulation of tight junctions (Claudin1, ZO-1, and Occludin), while HSC and EO exhibited additional protections. All treatments increased CAT, T-SOD, and T-AOC, and decreased MDA in serum and jejunal mucosa at similar degrees (P < 0.05). Moreover, all treatments alleviated ETEC-induced inflammation as shown by decreased IL-6, TNF-α, INF-γ, and increased IL-4 and IL-10 in serum or jejunal mucosa (P < 0.05), and enhanced the immunity by increased serum IgG and mucosal sIgA (P < 0.05). HSC and SE further reduced mucosal INF-γ and TNF-α than LSC or EO aligning with their additional protection against diarrhea during ETEC infection. Additionally, the key gut bacteria (e.g., Terrisporobacter) related to the benefits of SCFP and EO were identified. In sum, all treatments enhanced growth performance and protected against ETEC-induced intestinal damage through the regulation of redox and immune homeostasis. HSP and SE offered extra protection during disease for their additional control of inflammation. Our study provided new insight into the use of feed additives in the context of animal health states.


Weanling pigs are vulnerable to a variety of stressors and pathogen infections. Enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of diarrhea and growth retardation in weanling pigs. The postbiotics, Saccharomyces cerevisiae fermentation postbiotics (SCFP), and essential oil (EO, mainly thymol, and cinnamaldehyde) were reported to exert health benefits in different sites of the intestine. However, whether SCFP and EO have dose and synergistic effects on weanling pigs, especially against ETEC infection, is incompletely understood. Our research has revealed that SCFP, EO, and their combination all enhanced the growth performance and intestinal barrier function, and reduced diarrhea of piglets, albeit to varying degrees, under both health conditions and ETEC infection. We further elucidated the disparity in the regulation of redox and immune homeostasis by SCFP, EO, and their combination contributing to their different action in distinct states. This has led to a reevaluation of the function of additives in the context of gut health and disease susceptibility.


Enterotoxigenic Escherichia coli , Escherichia coli Infections , Oils, Volatile , Swine Diseases , Swine , Male , Animals , Saccharomyces cerevisiae , Tumor Necrosis Factor-alpha , Oils, Volatile/pharmacology , Escherichia coli Infections/prevention & control , Escherichia coli Infections/veterinary , Diarrhea/microbiology , Diarrhea/veterinary , Diet/veterinary , Inflammation/veterinary , Superoxide Dismutase , Swine Diseases/prevention & control , Swine Diseases/microbiology , Animal Feed/analysis , Weaning
20.
J Anim Sci ; 1022024 Jan 03.
Article En | MEDLINE | ID: mdl-38245836

This study investigated the impact of an enterotoxigenic Escherichia coli (ETEC) F18 challenge on newly weaned pigs when fed one of three Zn levels (150, 1,400, or 2,500 ppm) on performance, Zn status, ETEC shedding, and diarrhea. The ETEC challenge was hypothesized to have a more pronounced negative impact on pigs fed a diet containing 150 ppm Zn compared to 1,400 or 2,500 ppm Zn for 14 d after weaning. The study included 72 ETEC F18 susceptible pigs weaned at ~28 d of age (d 0 of the study). The pigs were distributed according to initial weight and litter to one of the three dietary Zn levels. Half of the pigs were challenged with ETEC on d 1 and 2. The challenge reduced (P ≤ 0.03) feed intake and average daily gain (ADG) during d 3 to 5. Challenged pigs fed 150 ppm Zn had lower (P = 0.01) ADG during d 5 to 7 compared to those fed 1,400 or 2,500 ppm Zn, whereas control pigs' ADG were not affected by dietary Zn content. Challenged pigs fed 150 ppm Zn also showed lower (P < 0.01) fecal dry matter (DM) on d 5 compared to control pigs fed 150 ppm Zn and challenged pigs fed 1,400 or 2,500 ppm Zn. Challenge increased (P < 0.01) ETEC shedding in all groups, but challenged pigs fed 150 ppm Zn showed higher (P ≤ 0.05) fecal shedding of ETEC and toxins than when fed 1,400 or 2,500 ppm. On d 3, C-reactive protein concentration in plasma was lower (P < 0.03) for pigs fed 1,400 and 2,500 compared to 150 ppm Zn. Plasma haptoglobin and pig major acute phase protein were unaffected by dietary Zn content. On d 0, the serum Zn concentration was 586 ±â€…36.6 µg/L, which pigs fed 150 ppm Zn maintained throughout the study. The serum Zn concentration increased (P ≤ 0.07) in pigs fed 1,400 or 2,500 ppm Zn. The challenge decreased (P < 0.01) the serum Zn concentration in pigs fed 2,500 ppm Zn. On d 5 and 7, serum Zn concentration was similar for challenged pigs fed 1,400 and 2,500 ppm Zn, while control pigs fed 2,500 ppm Zn had higher (P < 0.01) serum Zn concentration than 1,400 ppm Zn. On d 7, serum Zn concentration tended (P = 0.08) to be lower for pigs with diarrhea (fecal DM ≤ 18%). In summary, these results indicate that newly weaned pigs fed 150 ppm Zn are more susceptible to ETEC F18 colonization and its adverse consequences such as diarrhea and reduced growth, even though challenge did not increase acute phase proteins.


At weaning, the immune system of pigs is not fully developed, leaving them more susceptible to infections such as enterotoxigenic Escherichia coli (ETEC) F18. This study investigated the effect of dietary zinc content on newly weaned pigs infected with ETEC in terms of performance, serum zinc status, diarrhea, E. coli shedding, and systemic inflammation markers. Challenged pigs had reduced growth the first 3 d after the challenge when fed 150 ppm dietary Zn compared to non-challenged pigs. Moreover, the challenge increased E. coli fecal shedding and resulted in more liquid feces, and a greater risk of diarrhea in pigs fed 150 ppm zinc compared to 1,400 and 2,500 ppm zinc. The challenge was not able to induce a response in the acute phase proteins. The serum zinc concentration was lowest when feeding 150 ppm, and the ETEC challenge caused a reduction in the serum Zn concentration only when feeding 2,500 ppm zinc. These findings suggest that newly weaned pigs fed 150 ppm zinc are less capable of withstanding an ETEC challenge based on impaired growth performance and increased diarrhea and E. coli shedding.


Enterotoxigenic Escherichia coli , Escherichia coli Infections , Swine Diseases , Animals , Swine , Weaning , Escherichia coli Infections/veterinary , Zinc , Diet/veterinary , Diarrhea/veterinary , Animal Feed/analysis
...